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ABSTRACT

Despite the broad literature base on factor analysis best practices, research seeking to evaluate a
measure’s psychometric properties frequently fails to consider or follow these recommendations. This
leads to incorrect factor structures, numerous and often overly complex competing factor models and,
perhaps most harmful, biased model results. Our goal is to demonstrate a practical and actionable process
for factor analysis through (a) an overview of six statistical and psychometric issues and approaches to be
aware of, investigate, and report when engaging in factor structure validation, along with a flowchart for
recommended procedures to understand latent factor structures; (b) demonstrating these issues to
provide a summary of the updated Posttraumatic Stress Disorder Checklist (PCL-5) factor models and a
rationale for validation; and (c) conducting a comprehensive statistical and psychometric validation of the
PCL-5 factor structure to demonstrate all the issues we described earlier. Considering previous research,
the PCL-5 was evaluated using a sample of 1,403 U.S. Air Force remotely piloted aircraft operators with
high levels of battlefield exposure. Previously proposed PCL-5 factor structures were not supported by the
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data, but instead a bifactor model is arguably more statistically appropriate.

In psychological and personality research, it is common to have
an extensive research literature statistically evaluating a multi-
tude of psychometric factor structures for theoretical and diag-
nostic purposes. Unfortunately, these factor exploration or
confirmation endeavors have been and continue to be clouded
by inconsistent and sometimes incorrect methods (e.g., relying
too heavily on global measures of fit). These various factor
models often lead to a published proliferation of excessively
complex and contradicting factor structures that could be sta-
tistically unjustified and lack generalizability or predictive
validity, resulting in insufficient clinical or practical relevance.
Although dimension reduction and model selection are
essential for measure development, the central goal of modeling
is description and prediction. Thus, it is important for research-
ers to be cognizant of balancing generalizability with accurately
describing the underlying phenomenon (Cudeck & Henly,
1991; Preacher, Zhang, Kim, & Mels, 2013). This means explic-
itly stating and balancing scientific goals—searching for models
that generalize (i.e., prediction and replicate) or models with
verisimilitude (i.e., description and explanation)—and realizing
that determining the true number of factors based on global
model fit statistics (e.g., x2) is likely futile. In this context,
researchers tend to rely too heavily on global model fit statistics,
which often lead to arbitrary factor fishing, and overly complex
and overfitted models (see Hayduk, 2014b). Users are fre-
quently not cognizant that generalizability, goodness of fit, and
overfitting are each a function of model complexity, and these

“good fitting” models might fit the data well, but they can fail
in explaining the data generating process and can exhibit poor
predictive validity (see Myung & Pitt, 2002, Figure 11.4, p. 449;
Pitt, Myung, & Zhang, 2002, Figure 2, p. 475; Preacher, 2006,
Figure 3, p. 233).

Further, as model complexity increases, prediction error can
drop to zero, but these models overfit the data and will typically
have poor generalizability (Hastie, Tibshirani, & Friedman, 2009;
James, Witten, Hastie, & Tibshirani, 2013). This phenomenon
becomes more prevalent with smaller sample sizes and is known
as the “bias-variance trade-off” (Hastie et al., 2009); with more
complex models, bias decreases (approximation error decreases)
and variance increases (prediction or estimation error increases).
In practice, this means that complex models can fit well due to
arbitrary properties of the model, but have very little to do with
the optimal approximation to truth, and can display poor gener-
alizability. This phenomenon is illustrated in Figure 1, where a
point of maximum generalizability or maximum predictive valid-
ity is reached, after which models can exhibit excessive complex-
ity and a decrease in generalizability due to overfitting the data.
Thus, generalizability depicts a balance between goodness of fit
and parsimony, with the two not always being positively related
(Myung, Balasubramanian, & Pitt, 2000).

In light of this, this article highlights and discusses some
of these considerations consisting of three parts: (a) Provide
an overview of six statistical or psychometric issues and
approaches to be aware of, investigate, and report when
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Figure 1. An illustration of the relationship between generalizability, goodness of fit, and overfitting as a function of model complexity (Myung & Pitt, 2002). There is a
point of maximum generalizability or maximum predictive validity after which models can exhibit excessive complexity and a decrease in generalizability due to overfit-

ting the data. This is illustrated in the three models below the plot.

Source: From Stevens’ Handbook of Experimental Psychology (p. 449, Figure 11.4), by J. Wixted (Ed.), 2002, New York, NY: Wiley. Copyright 2002, with permission from Wiley.

engaging in factor structure validation, along with a flowchart
for recommended procedures to understand latent factor struc-
tures (Figure 2); (b) by way of demonstrating these matters, we
provide a summary of the updated Posttraumatic Stress Disor-
der Checklist (PCL-5'; Weathers, Litz, Herman, Huska, &
Keane, 1993; Weathers et al., 2013) factor models (see Table 1)
and a rationale for validation; and (c) we conduct a compre-
hensive statistical and psychometric validation of the PCL-5
factor structure to demonstrate all issues and work through the
Figure 2 flowchart. We believe this will provide researchers and
practitioners a very practical and actionable process for engag-
ing in measure and factor structure validation, also providing a
complete and through validation of the PCL-5.

It is important to note that our goal is not to provide an
exhaustive review of factor model evaluation methods (see
Schmitt, 2011, for a review), but to review and illustrate factor
model selection issues and methods through a comprehensive
validation for a widely researched and commonly used diagnos-
tic instrument, the PCL-5. This means the methods discussed,
recommended, and illustrated here using the PCL-5 are
broadly applicable and can be applied to most any instrument
development and validation process that involves psychometric
factor dimension reduction and model selection.

Six statistical and psychometric issues and approaches

From a statistical and psychometric perspective, researchers
should be cognizant of six issues and approaches: (a) item and

'The PCL was also updated to the 20-item PCL-5 (Weathers et al., 2013) to match
the 20 posttraumatic stress disorder (PTSD) symptoms of the fifth edition of the
Diagnostic and Statistical Manual of Mental Disorders ([DSM-5]; American Psychi-
atric Association, 2013; see Bovin et al., 2016).

variable skew, (b) model estimation, (c) factor analysis frame-
works (i.e., implementing exploratory factor analysis [EFA],
confirmatory factor analysis [CFA], or both; see Figure 2), (d)
number of items per factor, (e) interfactor correlation magni-
tudes, and (f) factor model selection. Each of these should be
evaluated and at least briefly discussed, with the appropriate
statistics reported. Although all these areas are critical, perhaps
most important is selecting the best factor structure. To help
guide researchers, Figure 2 outlines a potential methodology to
explore the factor structure under different modeling situations.

Item and variable skew

As with any statistical analysis, researchers should carefully
examine the skewness and other descriptive statistics to deter-
mine the most statistically appropriate estimation method and
modeling approach. Examining item skewness, in particular, is
essential because extreme item distributions can affect the esti-
mation accuracy (Flora & Curran, 2004), the item’s intercept or
threshold (depending on the estimation method used) esti-
mates, the correlation between the variables, and, consequently,
the dimensional structure. Specifically, skewed items with simi-
lar thresholds can generate spurious factors, called difficulty
factors or method factors (Bernstein & Teng, 1989; Coenders,
Satorra, & Saris, 1997; McDonald & Ahlawat, 1974).

As demonstrated by the few items per factor in the PCL-5,
skewed items can cluster as difficulty factors (e.g., items associ-
ated with very rare psychological occurrences are likely to cor-
relate highly due to their similar item distribution), rather than
sharing a similar construct domain. This occurrence can also
result in unstable and conflicting factor models, as the data
skew (rather than the item content) and sample characteristics
can drive a factor structure. Moreover, these skewed items can
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Figure 2. A flowchart of recommended procedures to understand latent factor structures. We encourage researchers to always conduct dimensionality analyses with their
CFA, BCFA, EFA, or ESEM to ensure the correct number of factors are estimated and to understand any potential model misfit. This diagram is not all inclusive and
researchers should consider other modeling issues as appropriate. The dashed lines represent the procedure followed in our analysis of the updated Posttraumatic Stress
Disorder Checklist (PCL-5). Note. If factors are highly correlated, a large dominant eigenvalue is present, and theory or the analyses (i.e., CFA, BCFA, EFA, and ESEM) sug-
gest a general dominant factor, then testing a bifactor model would be appropriate. CFA = confirmatory factor analysis; BCFA = Bayesian confirmatory factor analysis;

EFA = exploratory factor analysis; ESEM = exploratory structural equation modeling.

negatively influence the model fit (McLeod, Swygert, & Thissen,
2001; Sawaki, Stricker, & Oranje, 2009), which might also lead
to inconsistent results across samples. Considering the results
from Table 1, it is concerning that only two authors reported or
tested the distribution properties of the data.”

Model estimation

Depending on the degree of item skew and response option pro-
liferation, it is critical that researchers employ appropriate model
and estimation methods (Flora & Curran, 2004; Wirth &
Edwards, 2007). Fortunately, more robust linear and nonlinear
factor analysis estimation methods and frameworks exist that
authors can employ to circumvent these data issues (e.g., weighted
least squares mean- and variance-adjusted [WLSMYV], robust
maximum likelihood [MLR], and Bayesian). Nonetheless,
researchers need to provide a valid justification for selecting the
estimation method(s) that are based on previous statistical

2The American Psychological Association provides reporting standards for quanti-
tative research in psychology, which includes structural equation modeling
standards in Table 7 (Appelbaum et al., 2018).

research, rather than user preference. It is also important that
researchers use consistent estimation approaches across factor
analysis methods (e.g., EFAs and CFAs) so as not to introduce
estimation method variation into their study. For example, if
authors use maximum likelihood (ML) to estimate their EFA
model and WLSMV to estimate their CFA model (especially with
the same sample), it makes it difficult to decipher whether the
estimation method (e.g., ML vs. WLSMV) or modeling approach
(i.e., EFA vs. CFA) created differences in model results.

As indicated in Table 1, most authors (66%) reported using
either WLSMV or MLR. Although it is a positive finding that
many authors used more robust methods, it is critical to keep
in mind that WLSMV typically performs better than MLR (L4,
2016) with ordered categorical data. Other authors used ML
estimation, which has been shown to perform poorly with
skewed ordered categorical data, or simply did not report the
estimation method. Even when using robust estimators (ie.,
WLSMV or MLR) within factor analysis, it is still possible to
have difficulty factors or spurious factors with highly skewed
data or when items have large differences in thresholds
(Yang & Xia, 2015). Thus, researchers should be exploring and
considering the item distribution even when implementing
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Figure 3. The factor model and standardized factor loadings for the two-factor bifactor model.

robust estimation methods. Given that a full literature review
on factor analysis model estimation is outside the purview of
this study (see Beauducel & Herzberg, 2006; Flora & Curran,
2004; Li, 2016; Muthén & Asparouhov, 2012), it is our hope
that future researchers not only report and select the most
appropriate estimation method, but also consider how the esti-
mation method influences the parameter estimates.

Although some authors did use robust estimation methods
(e.g., WLSMV), these methods still rely on using model modifi-
cation indexes to free parameters in a stepwise fashion within
CFA. Although freeing parameters in a stepwise fashion might
seem logical, with each unconstrained parameter the model can
stray further and further from the original theory with an overfit
and incorrect model. Alternative methods do exist that might
help to illuminate the latent factor structure and avoid these pit-
falls, with Bayesian CFA (BCFA) being one such approach
(Asparouhov, Muthén, & Morin, 2015; Muthén & Asparouhov,
2012). BCFA gives researchers the flexibility to identify potential
cross-loadings, or residual covariances that might have otherwise
been overlooked. If done properly (see Asparouhov et al., 2015),
BCFA can result in more accurate factor correlations and helps
to discover instances where the CFA model fails (e.g., relevant
model modifications are discovered), while also avoiding model
modifications from small and unimportant residual correlations.

Factor analysis frameworks

Another important consideration is whether to use an EFA,
CFA, or a combination of both, including exploratory struc-
tural equation modeling (ESEM; Marsh, Liem, Martin, Morin,
& Nagengast, 2011) or BCFA (Asparouhov et al., 2015; Muthén
& Asparouhov, 2012). Unfortunately, some misconceptions
exist around which, when, and how to use various factor ana-
lytic approaches. Researchers also typically hold the erroneous
view that estimating an EFA and CFA model with the same
data is inappropriate. Although it is often preferable to estimate
the EFA and CFA model with different samples, especially for
cross-validation, it is perfectly acceptable to fit different models
to the same data in an effort to better understand the data gen-
erating process and factor structure. In fact, some sample
exploration and confirmation should be encouraged under
certain circumstances (e.g., poor CFA model fit), especially
when assuming a priori theory and only using confirmatory
models can led to statistically weak, complex, and overfit mod-
els (Browne, 2001; Gorsuch, 1997).

As opposed to blindly using CFA for rote factor structure
confirmation and covert exploration (Asparouhov & Muthén,
2009; Browne, 2001; Gorsuch, 1983; MacCallum, Rosnowski, &
Necowitz, 1992; Ropovik, 2015), it is arguably better to assess
and reassess the data with an EFA to find where and why model
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Table 1. Summary of factor analytics studies for the updated Posttraumatic Stress Disorder Checklist (PCL-5).

First author ~ Year Sample size Sample demographic Item/variable Model Factor Interfactor Factor Tested/best
(n) skew discussed  estimation analysis correlations selection  PCL-5 model(s)
method method reported method(s)
Armour 2016 412 U.S. fully trauma-exposed No WLSMV CFA Yes (.61-.89) 1,2,3,459 23,4567
undergraduate students
Armour 2015 497 & 1,484 U.S. fully trauma-exposed No WLSMV CFA Yes (59-92) 1,2,3,4,56, 23,4567
undergraduate students and 9
veterans
Ashbaugh 2016 838 & 262 Canada fully trauma-exposed No MLE CFA Yes (60-95) 1,2,3,56,7, 2,57
English/French speaking 8
undergraduate students
Biehn 2013 266 U.S. fully trauma-exposed No WLSMV CFA Incomplete 1,3,4,59 2,3
undergraduate psychology (.71-.91)
research subjects
Blevins 2015 278 & 558 U.S. fully trauma-exposed No MLR CFA No 1,2,3,4,5,6, 2,57
undergraduate students 7,8,9
Bovin 2016 328 & 140 U.S. fully/partially trauma-exposed Yes MLE CFA No 1,3,4,56,7, 1,2,6,7,8,9,
veterans 8,9 10, 11
Eddinger 2017 129 & 737 U.S. partially trauma-exposed No MLE CFA No 1,3,4,5,6,8 2,3,4,9
veterans and undergraduate
students
Frewen 2015 557 U.S. PCL-5 PTSD diagnosed No PAF/MLR EFA/LPA Yes® (-.31-31) 10, see EFA 6-factor
community sample Frewen for and LPA 5-
LPA class best
Keane 2014 507 U.S. stress-exposed veterans Yes (not MLR CFA Yes (.79-1.31 )b 1,2,3,4,57, 2
reported) 9
Kriiger- 2017 352 German fully trauma-exposed No MLR/WLSMV CFA Yes (.76-.93) 1,2,3,4,56, 23,4567
Gottschalk community sample 7,8,9
Liu 2014 1,196 Chinese fully trauma-exposed Yes (limited) MLR CFA Yes (60-97) 1,2,3,4,56, 23,4,12,13,
earthquake survivors 7,89 14
McSweeney 2016 290: U.S. partially trauma-exposed No Not reported EFA No 1,3,4,5 5 models
13 4177 undergraduate students/ tested
Amazon Mechanical Turk
5-factor best
Mordeno 2016 460 Filipino partially trauma-exposed  Yes (limited) MLR CFA Yes (.42-.85) 1,2,3,456, 23,4567
hurricane survivors 7,9
Murphy 2017 364 or 481 Malaysian partially trauma-exposed No MLR/WLSMV CFA No 1,3,456,7, 23,4567,
(n unclear) adolescent community sample 8 16
Pietrzak 2015 1,484 U.S. partially trauma-exposed No Not reported CFA No Not reported 2,567
veterans
Shevlin 2017 195&239 UK. fully trauma-exposed clinical No MLR/WLSMV CFA No 1,3,456,7, 23,456,7,
samples 8 16
Tsai 2015 1,484 U.S. partially trauma-exposed No MLR CFA No 1,2,3,4,5,6, 2,4,15
veterans 7,89
Wortmann 2016 912 U.S. treatment-seeking veterans No Not reported CFA No 1,2,3,457, 24567
and military personnel 8,9

Note. Factor selection method: 1 = x% 2 = Ax% 3 = comparative fit index; 4 = Tucker-Lewis Index; 5 = root mean square error of approximation (RMSEA); 6 = confi-
dence interval for RMSEA; 7 = standardized root mean square residual or weighted root mean square residual; 8 = Akaike’s information criterion; 9 = Bayesian infor-
mation criterion; 10 = eigenvalue > 1 criteria; 11 = parallel analysis; 12 = misspecification examination. Tested/best PCL-5 model(s): 1T = posttraumatic stress disorder
(PTSD) one-factor; 2 = DSM-5 four-factor; 3 = DSM-5 dysphoria four-factor; 4 = DSM-5 dysphoric arousal five-factor; 5 = anhedonia six-factor; 6 = externalizing six-
factor; 7 = hybrid seven-factor; 8 = anhedonia seven-factor; 9 = DSM—4 three-factor; 10 = DSM-4 Dysphoria four-factor; 11 = DSM-4 dysphoria arousal four-factor; 12
= DSM-5 revised five-factor; 13 = DSM-5 dysphoria revised five-factor; 14 = DSM-5 dysphoric arousal revised six-factor; 15 = DSM-5 new model six-factor; 16 = alter-
native dysphoria sic-factor. The best model is shown in bold. WLSMV = weighted least squares mean- and variance-adjusted; CFA = confirmatory factor analysis; MLE =
maximum likelihood estimation; MLR = robust maximum likelihood; PAF = principal axis factoring; EFA = exploratory factor analysis; LPA = latent profile analysis.

2Used LPA to estimate factor correlations.
BCorrelations above one can indicate model misspecification.

misspecification is occurring. This is especially true when CFA
model respecification is unsupported by theory or when poorly
fitting CFA models result in a large number of modification
indexes (e.g., Taylor & Pastor, 2007). Even with previously
strong theory and having a good fitting CFA model, it is per-
fectly reasonable (and perhaps very wise) to either precede or
follow up a poor fitting CFA model with an EFA to better
understand the factor structure. Furthermore, it can be fruitful
to conduct a CFA on the same data used with an EFA. This is
especially true when the researcher seeks to demonstrate the
model’s fit under a more restrictive model, allow for the com-
parability of CFA model fit with previous and future research,

and establish the degree to which the results (e.g., interfactor
correlation) differ based on model specification (see Sass &
Schmitt, 2010).

Rather than following a scientifically limiting approach to
model building, researchers should concentrate on estimating
the correct or best model within a confirmatory framework,
exploratory framework, or both, which is conceptually sup-
ported by the integration of CFA and EFA in the SEM frame-
work of ESEM (Asparouhov & Muthén, 2009). This is especially
important, because exploring complex structures with a CFA
can lead to rather arbitrary modifications, unrealistic factor
loadings, and elevated interfactor correlations (Marsh et al.,
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2009; Schmitt & Sass, 2011). Within ESEM, researchers can
incorporate an EFA and CFA simultaneously (e.g., two factors
might be represented as an EFA and one as a CFA) to better rep-
resent their data. As Conway and Huffcutt (2003) found,
researchers make better decisions when EFA plays a more con-
sequential role in their research to develop and test theoretical
models, refine previously developed instruments, and test the
factor structure’s generalizability (Yang & Xia, 2015). In sum-
mary, EFA can be used to explore poorly fitting CFA models,
test factor structures that lack strong theory or hypotheses, and
confirm theorized factor structures when the CFA independent
cluster assumption is unrealistic (Gorsuch, 2003; Schmitt, 2011).

In reviewing Table 1, most PCL-5 authors used a CFA,
which seems appropriate at first glance given that the PCL has
been extensively researched and the PCL-5 is theoretically
grounded in the DSM-5. With that said, many authors used
CFA in a more exploratory fashion by just simply adding fac-
tors to improve global fit or relying on modification indexes,
which is arguably inappropriate (e.g., Asparouhov & Muthén,
2009; Byrne, 2012; Gerbing & Hamilton, 1996; Gorsuch, 1983;
Hayduk, 2014b; MacCallum et al, 1992; Marsh et al., 2011;
Mulaik, 1972). In cases like this, using EFA and CFA together
is more rigorous, because EFA, along with dimensionality anal-
yses (e.g., parallel analysis and eigenvalues), encourages a more
holistic and flexible statistical approach to item and factor eval-
uation and facilitates a better understanding of the optimal fac-
tor structure.

Another factor analytic approach that lends itself well to the
PCL-5 and many other measures is the bifactor model. Bifactor
models empower researchers to provide evidence of a single gen-
eral factor, as well the multidimensionality through parcels (or
doublets) of items that are not necessarily strong factors, but sim-
ply groupings of items that represent similar content domains
(Reise, Moore, & Haviland, 2010). The bifactor model also lets the
general factor and subfactors (i.e., specific factors) to “compete”
against one another in explaining item response variability. Thus,
a bifactor model can demonstrate evidence of unidimensionality,
where there is a unidimensional general factor and weak to non-
existent subscale factors. Moreover, bifactor models can also
inform the researcher whether these subscale factors are (a) really
just item parcels, (b) a multidimensional model with strong sub-
scale factors and a weak general factor, or (c) a balance of equally
strong general factor and subscale factors. It is worth noting that
bifactor models only have first-order factors, which is distinct
from second-order factor models (Canivez, 2016; Reise, 2012).

In general, the challenge of having a single general factor with
evidence of other interpretable factors and improved fit alleviates
researchers from having to postulate and fit numerous multidi-
mensional factor models (Reise et al., 2010). Further, it over-
comes the ambiguity of the general practice of total scores, and
not taking into account subscales, for clinical diagnosis when
additional item groupings have been found. Bifactor models can
also be useful for modeling method effects, such as those that
result from negatively and positively worded items.

It is important to emphasize that another strength of the
bifactor model is in testing for multidimensionality and examin-
ing the bifactor indexes (see Reise, Bonifay, & Haviland, 2013b,
and Rodriguez, Reise, & Haviland, 2016, for a review of bifactor
indexes). The bifactor indexes are discussed briefly later, but

Canivez (2016) and Rodriguez et al. (2016) provided a recent
tutorial of this model for interested readers. Using the bifactor
model indexes, researchers can answer five basic questions:

1. Do the data represent a unidimensional or multidimen-
sional factor structure?

2. Is it appropriate to use the overall or total score rather
than the individual or subscale?

3. Does the total score represent a single reliable latent con-
struct and are the subscales still be reliable after adjusting
for the general factor?

4. Are subscale scores truly independent of the general
factor?

5. How well do a set of items depict the latent construct and
can these items be used to specify latent constructs for
SEM?

Items per factor

As Reise, Waller, and Comrey (2000) noted when revising
scales, researchers should carefully consider the number of fac-
tors that exist in the data, the correlation between these factors
(discussed later), and the number of items per factor, with the
understanding that it is preferable to increase reliability by hav-
ing more items (i.e., overinclusive) than less (i.e., underinclu-
sive). Unfortunately, item sparseness is a major problem on
many of the theorized PCL-5 factor structures (i.e., many fac-
tors have only two items). The existence of too few items per
factor becomes not only an issue of model identification and
replication (Bollen, 1989; Little, Lindenberger, & Nesselroade,
1999; Velicer & Fava, 1998), but also a matter of construct
underrepresentation (Kaplan & Saccuzzo, 2008).

Although it is rarely appropriate to have two-item factors
(Raubenheimer, 2004), it is acceptable to have small item group-
ings known as facet scales (i.e., homogeneous item clusters or
item parcels) that represent different aspects of a construct
(Reise et al., 2000). Facets have high item correlations, and if
combined, have better reliability and distributional properties
than single items. As discussed later, this would also justify the
large interfactor correlations in the PCL-5. Therefore, based on
the opinion of psychometric and statistical experts, PCL-5
researchers should avoid two-item factors and instead concep-
tualize their utility as facets and, as discussed, consider fitting
alternative models, such as bifactor models (Reise et al., 2010).

Interfactor correlation magnitudes

Farrell (2010) indicated that when high interfactor correlations
exist (e.g., |r| > .75), concerns arise related to discriminant
validity (i.e., the degree to which measures of different con-
structs or concepts are different). Not only is discriminant
validity an issue from a psychometric perspective, but trepida-
tions related to multicollinearity within future regression-based
models, including SEM and path analysis, will also surface.
Large interfactor correlations can also result from overly
restrictive CFA models that mask the true factor structure
(Marsh et al., 2009; Schmitt & Sass, 2011). Unfortunately, these
interfactor correlations are rarely provided or discussed within
the PCL-5 validation research (see Table 1). Our results, and
other PCL-5 studies (Armour, Mullerovd, & Elhai, 2016;



Armour et al., 2015; Frewen, Brown, Steuwe, & Lanius, 2015;
Keane et al., 2014; Liu et al,, 2014), indicated the interfactor
correlations for many of the PCL-5 factors are large, suggesting
poor discriminant validity.

Associated with dimensionality (i.e., the number of factors
extracted) and discriminant validity, it is worth addressing a
scenario where researchers might argue for additional factors
beyond what the data recommend and with rather high inter-
factor correlations. As Preacher et al. (2013) discussed, if over-
factoring produces a more stable factor model and better
predicts the desired outcome, then these facets could be worth
treating as factors (still assuming the number of items on that
factor was acceptable). As an example, researchers could con-
ceivably argue that a five-factor PCL-5 model that better pre-
dicts (e.g., has an R? = 0.65) a desired outcome (e.g., suicide
tendencies) is preferable to a one-factor model with poorer
model predictions (e.g., R? = 0.45). With that said, there has
been no research that provides evidence that these more com-
plex models predict significantly better with the PCL-5.

Factor selection

One of the most important and difficult challenges in factor
analysis is determining the “correct” number of factors, which
is strongly connected to whether a CFA or EFA model is fit. It
is not surprising that choosing the right solution is a difficult
undertaking. Especially when theory is weak, the measure has
moderate to weak validity and reliability, item distributions are
not ideal (i.e., not normally distributed or insufficient variabil-
ity), and subjects are not randomly selected or representative
(Cudeck & Henly, 1991). Unfortunately, the published PCL-5
studies have not used additional approaches (e.g., parallel anal-
ysis) to determine the number of factors, as most (see Table 1)
relied solely on global fit evaluation with the x* test, approxi-
mate fit indexes (AFIs), or the likelihood ratio test (Ax?) to
compare nested models.

Weaknesses (e.g., sensitivity to large sample sizes, model com-
plexity, nonnormal data, and model misspecification) associated
with the x* and A x* have been well documented (for a review, see
Herzog, Boomsma, & Reinecke, 2007; Hoyle, 1995; Hu & Bentler,
1998; Sass, Schmitt, & Marsh, 2014). These weaknesses result in
the tendency of the x* and A x” to reject correctly specified models
under many of the conditions associated with the PCL-5. More
specifically, this means the x” statistic has a tendency for factor
overextraction (i.e., the number of extracted factors is larger than
the true number of factors; see Asparouhov & Muthén, 2009;
Hayashi, Bentler, & Yuan, 2007), which then results in the A >
statistic no longer following a x” distribution and again producing
biased inferences (Geweke & Singleton, 1980).

Due to these limitations, many researchers often rely heavily
on the AFIs, such as the Tucker-Lewis Index (TLI), comparative
fit index (CFI), standardized root mean square residual (SRMSR)
or weighted root mean square residual, and root mean square
error of approximation (RMSEA). Despite the development of
AFIs to circumvent problems associated with the x> statistic,
model fit can still be affected by model misspecifications (recall,
many of the AFIs are a function of the x*) and other model char-
acteristics (Saris, Satorra, & van der Veld, 2009). Thus, the x* and
AFIs should be used judiciously and in conjunction with other
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methods of factor extraction. For example, authors might evaluate
the parallel analysis, eigenvalues, x> test, and AFIs to provide an
initial assessment of the number of factors, and then use the A x*
test and AAFIs to determine whether a model with fewer or more
factors is preferable. This approach might provide some indica-
tion of improvement in a more complex model over a more parsi-
monious model.

Despite the numerous alternatives to determining the num-
ber of factors, there exists no single best statistical criterion for
doing so (Gorsuch, 2003), which means researchers must
examine the results using different methods and decide the
number of factors in an integrated fashion (Hayashi et al,
2007). Researchers must also provide strong evidence and justi-
fication that are supported by data and theory when finalizing
the optimal number of factors.

Although given less attention here, many PCL-5 researchers
relied on Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC), along with the change in these sta-
tistics, to determine the number of factors. Although these
methods can be regarded as single sample estimates of an
expected cross-validation criterion and certainly have a place in
statistics (see Preacher & Merkle, 2012; Preacher et al., 2013),
their weaknesses are also well documented. Mulaik (2009) criti-
cized the AIC and BIC due to their poor performance, sample
size dependency, and the frequency with which they are misun-
derstood or misapplied. Katz (1981), Shibata (1976), and
Preacher and Merkle (2012) further indicated that the AIC and
BIC tend to overestimate the number of parameters
needed and favor model complexity as sample size increases
(Bozdogan, 2000; McDonald & Marsh, 1990; Mulaik, 2001).
Further, AIC and BIC are only indirect estimates of generaliz-
ability and make more assumptions about the underlying
model than direct cross-validation methods (see Hastie et al.,
2009; James et al, 2013). The one major advantage that the
AIC and BIC methods have over other model fit statistics is
their ability to compare nonnested models (i.e., allows for a
comparison of models with a different number of variables);
however, given that the PCL-5 models are always nested, this
should not be the rationale for their use.

Fortunately, methods exist that when used in combination can
increase model accuracy, statistical rigor, and practicality, and
can arrive at a reasonable number of factors that are psychometri-
cally sound (see Schmitt, 2011). Considering this, we provide a
potential roadmap (see Figure 2) for researchers to follow when
evaluating the factor structure. In the context of Figure 2,
researchers need to know when and how to do the following:

1. Conduct a parallel analysis and consider the eigenvalue
magnitudes to provide an initial assessment of the pre-
liminary number of factors.

2. Implement an EFA, ESEM, BCFA, or bifactor model to
explore the factor structure (i.e., evaluate the interfactor
correlations, along with the primary and secondary fac-
tor loading magnitudes) and evaluate the appropriate-
ness of the latent constructs.

3. Conduct a CFA to determine the model quality under
more restrictive conditions and determine whether the
parameter estimates change significantly.

4. Evaluate the EFA and CFA models with the x? test, AFIs,
and Ay test.
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5. Examine model misspecification with the Saris-Satorra-
van der Veld method to complement x* and AFT statis-
tics. This last point can be especially important because
as Hayduk (2014a, 2014b) lucidly summarized, when the
x* depicts covariance ill fit, potentially serious model
misspecifications should be thoroughly investigated.

It is worth noting that other factor extraction methods exist
(see Peres-Neto, Jackson, & Somers, 2005; Revelle, n.d;
Schmitt, 2011), but they are not all accurate, statistically rigor-
ous, or practical.” Regardless of the methods used, considerable
attention must be paid to the number of factors estimated and
the approach taken to arrive at the factor structure. Unfortu-
nately, nearly all the PCL-5 studies to date rely almost exclu-
sively on model selection based on the theorized number of
factors and the x test, which appears to have led to a prolifera-
tion of complex factor models (see Table 1).

Summary of the PCL-5 factor models and rationale
for validation

The updated PCL-5 (Weathers et al., 1993; Weathers et al.,
2013) is an example of a measure with a factor structure that
has been extensively investigated and hypothesized to exhibit
excessively complex factor structures due to overfitting the
data. The PCL-5 was selected as a demonstration measure for
several additional substantive and psychometric or statistical
reasons. First, the PCL-5 is widely used in many settings to
make “life-changing” assessments, so it is a relatively high-
stakes assessment (see Gray-Little & Kaplan, 1998; Padilla &
Borsato, 2008). Second, although complex factor structures of
the PCL-5 have been proposed, many of these factor struc-
tures are difficult to defend statistically and psychometrically.
Nevertheless, determining the optimal theoretically and sta-
tistically derived factor structure based on the underlying
symptom dimensions of PTSD has remained elusive. This dis-
cussion began with the DSM-IV-TR (American Psychiatric
Association, 2000) and has persisted with the DSM-5 (e.g.,
Armour et al.,, 2016; Blevins, Weathers, Davis, Witte, & Dom-
ino, 2015; Bovin et al., 2016; Konecky, Meyer, Kimbrel, &
Morissette, 2016; Liu et al., 2014; Tsai et al., 2015; Wortmann
et al.,, 2016). Despite this ongoing examination of PCL-5 fac-
tor structures, these models have not been evaluated from a
more comprehensive and psychometric and statistical per-
spective. Last, and perhaps most important, in the context of
personality assessment those diagnosed with PTSD have been
shown to have a high rate of “character” pathology (e.g.,
Southwick, Yehuda, & Giller, 1993) and PTSD has strong
connections with different types of personality disorders
(e.g., Davidson & Foa, 1991; King, North, Suris, & Smith,
2016).

Consequently, the PCL-5 research has introduced at least
15 different one-, three-, four-, five-, six-, and seven-factor
models, ranging from the one-factor PTSD model to the
seven-factor hybrid model (see Table 1; Armour et al., 2016;

3The eigenvalue-greater-than-1 rule or Kaiser criterion (K1) somehow still man-
ages to persist in practice, but it should not be used as it has been shown to be
inaccurate. Van der Eijk and Rose (2015) provided a nice open access review of
the problems with the K1 criterion.

Bovin et al., 2016; Young, 2016). The models most often cho-
sen as “best” by researchers tend to be the more complex mod-
els, which generally have encompassed the six-factor
anhedonia, six-factor externalizing behaviors, and seven-fac-
tor hybrid (i.e., a hybrid of the externalizing behaviors and
anhedonia models). These more complex models have gener-
ally been selected as best based largely on theory driven by
global model fit criteria, often ignoring other psychometric
and statistical methods. Although theoretical justification is
extremely important when deciding on the final factor struc-
tures, overreliance on global fit indexes can hinder scientifi-
cally reproducible results (Baker, 2016; Open Science
Collaboration, 2015; Ropovik, 2015; Wasserstein & Lazar,
2016) for determining the best factor structure around practi-
cal and clinical efficacy.

In the context of the previous paragraph, Table 1 provides a
summary of PCL-5 CFA and EFA studies to date and the statis-
tical methods used. Several patterns are worth highlighting. First,
when determining the optimal number of factors, researchers
adhered mostly to CFA models and model fit statistics, ignoring
the eigenvalues (i.e., the eigenvalues were not provided nor dis-
cussed) and related methods (e.g., parallel analyses) to aide in
determining the number of factors. Second, most authors argued
for more complex models without considering if these item clus-
ters truly are factors rather than simply facets (see Reise et al.,
2000). This is problematic because the artifact of these complex
models can be statistically dubious factors with a small number
of items per factor (ie., often only two) that are not psychomet-
rically sound latent constructs. This can lead to excessive com-
plexity and falling into the overfit trap, as discussed and
illustrated in Figure 1. Finally, the interfactor correlations were
rarely provided; thus, there was no evidence of discriminant
validity and whether the factors should or even could be com-
bined. For those studies that did provide the interfactor correla-
tions, these correlations were often so large it would be difficult
to argue different factors were being measured.

Statistical and psychometric validation of the PCL-5
factor structure

Participants

This study uses responses from U.S. Air Force MQ-1 Predator
and MQ-9 Reaper remotely piloted aircraft (RPA; i.e., drones)
pilots and sensor operators, who have high levels of direct
exposure to combat-related trauma. Specifically, RPA pilots
and sensor operators actively track, target, and destroy enemy
combatants and assets; offer protection to civilian and military
personnel; inspect and survey battle damages after they have
performed weapon strikes (e.g., Hellfire missile strikes); and
obtain information to increase situational awareness of the bat-
tlefield. Resulting from their service, RPA pilots and sensor
operators can suffer PTSD or severe trauma due to witnessing
death and destruction from the weapon strikes they perform, as
well real-time observation of the battlefield (Chappelle, Good-
man, Reardon, & Thompson, 2014). The PCL-5 is used to help
psychologists screen for and better understand the symptomol-
ogy of trauma within this population and to track their level of
PTSD symptoms over time.



The purpose and methodology of the study were reviewed and
granted exemption by the U.S. Air Force Research Laboratory
Institutional Review Board and were considered to be minimal
risk. Before participants began the electronic survey, they were
asked if they understood the nature, purpose, and instructions of
the survey and then were asked to voluntarily consent to partici-
pate. Those who endorsed “yes” proceeded to take the survey,
whereas those who endorsed “no” were not given the survey and
instead were redirected to another Web page that instructed them
on how to contact the independent study researchers for addi-
tional information. Seven individuals declined participation after
reading the informed consent section.

Sample 1

Data were collected from 1,403 RPA military pilots between
January and April 2015. Most of the pilots were male (87.5%
male, 12.4% female, 0.6% missing) and were either married
(64.8%, n = 909) or single, never married (22.0%, n = 309).
However, many were single due to divorce (7.1%, n = 99);
unmarried, but in a significant or partner relationship (6.0%, n
= 84); or did not answer this item (missing; 0.1%, n = 2). The
age breakdowns were as follows: 18 to 25, 17.4% (n = 246), 26
to 30, 27.2% (n = 381), 31 to 35, 25.9% (n = 363), 36 to 40,
15.3% (n = 215), and older than 41, 13.6% (n = 191). As for
military experience, most were currently classified as active
duty (66.4%, n = 931) or in the Guard (27.4%, n = 384), with a
significantly smaller number classified as Reserve (5.6%, n =
78) or civilian, contractor, or missing (0.7%, n = 10).

Sample 2

Whereas Sample 1 included all RPA pilots regardless of
their level of trauma, Sample 2 was selected to determine if
the results differed when using a more traumatized sample.
Therefore, a subsample of participants from Sample 1 were
selected who were directly tasked with either decision mak-
ing or analyzing real-time audio or video feed from the
RPA strikes. To be included in Sample 2 (n = 715), partici-
pants were required in the past 12 months (at the time of
data collection) to have one or more severe events on one
of the following questions:

1. In total, how many separate events involving U.S. or
Allied Forces being physically injured or killed by enemy
forces have you virtually observed?

2. In total, how many separate events involving U.S. or
Allied Forces being injured or killed by friendly forces
have you virtually observed?

3. In total, how many separate events involving noncom-
batant bystanders being injured or killed as a result of
enemy forces operations have you virtually observed?

It is critical to indicate that not all results were provided for
Sample 2, as these results were mostly identical to Sample 1.
Omitted results from Sample 2 can be obtained from the corre-
sponding author.

Measures

The PCL-5 is a 20-item screening instrument based on DSM-5
symptom Criteria B (re-experiencing), C (avoidance), D (nega-
tive cognitions/mood), and E (arousal) clusters for PTSD
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(American Psychiatric Association, 2013; Weathers et al,
2013). Participants report the severity of symptoms over the
past month they are currently experiencing in relation to a
trauma-related event or exposure. Respondents rate each item
on a scale from 0 (not at all) to 4 (extremely). A total symptom
severity score ranges from 0 to 80 and can be obtained by sum-
ming the scores from each of the 20 items. Although the PCL-
5 is a relatively new measure, Hoge, Riviere, Wilk, Herrell, and
Weathers (2014) found it performed equivalently to the PTSD
Checklist-Specific in a study on U.S. soldiers. However, as indi-
cated earlier, a statistically rigorous factor structure is currently
in question, and, therefore, clear operational definitions have
yet to be created.

Procedures

Participation to complete the PCL-5 was encouraged by U.S.
Air Force MQ-1 Predator and MQ-9 Reaper leadership (wing,
group, squadron commanders) via a mass e-mail invitation to
approximately 2,500 U.S. Air Force RPA pilots and sensor
operators (from 23 separate squadrons within the continental
United States) with government e-mail. These operators
engage in around-the-clock missions that involve surveillance
of various battlefields throughout the globe, as well as tracking
and eliminating enemy combatants via weapon strikes. As a
result, this unique group of military personnel has high levels
of exposure to battlefield trauma (Chappelle et al., 2014). The
e-mail explained the study purpose and confidentiality safe-
guards to maximize participation and self-disclosure. Inter-
ested participants were directed to a secure Web site to
complete a consent form, demographics questionnaire, the
PCL-5, and other mental health screening instruments. On
average, it took participants 25 to 30 min to complete. Partici-
pants were also instructed on local resources and points of con-
tact for obtaining mental health care at their discretion.

Model estimation

All primary EFAs and CFAs were conducted within Mplus 8
(Muthén & Muthén, 1998-2017) using a WLSMV estimator and
a polychoric correlation matrix designed for ordered categorical
data. WLSMYV has been shown to perform equally well or better
than other estimation methods with ordered categorical and
skewed data (Flora & Curran, 2004; Liang & Yang, 2014). For
our Sample 1 data, the items were all skewed and contained
skew statistics that ranged from 1.41 (Item 20) to 4.45 (Item 16).

The latent factor variances were fixed at one to identify the
model and set the metric for the CFA, BCFA, and bifactor
models, whereas the mean and variance were fixed at 0 and 1,
respectively, to identify the model for EFA models (i.e., typical
EFA practice). Whereas the CFA factors were established by
determining what items load on each factor using previous
PCL-5 theory (see references earlier), EFA ascertained the fac-
tor structure by evaluating the eigenvalue magnitudes, parallel
analysis, and model fit statistics. To obtain an approximate sim-
ple structure with EFA, an oblique Geomin rotation was used
because the PCL-5 is a well-developed measure that should
have fewer and smaller cross-loadings and produce a cleaner
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Table 2. Model fit statistics for each of the previously theorized models using Sample 1.

WLSMV model fit MLR
Model X df A2 Adf CFI TLI RMSEA RMSEA 90% Cl AlC BIC
CFA and EFA one-factor 2167.27 170 239.34 2 0.951 0.945 0.092 [.088, .095] 46827 47142
CFA one-factor (modified model) 1843.39 168 ™ ™ 0.959 0.953 0.084 [.081, .088] 46163 46488
CFA two-factor 1310.82 169 cP cP 0972 0.968 0.069 [.066, .073] 45228 45548
CFA four-factor DSM-5 1303.33 106 322.08 4 0.972 0.968 0.070 [.067, .074] 45073 45419
CFA four-factor dysphoria 1396.80 164 259.92 4 0.970 0.965 0.073 [.070, .077] 45137 45484
CFA five-factor dysphoria arousal 1194.32 160 426.28 8 0.975 0.970 0.068 [.064, .072] 44848 45215
CFA six-factor externalizing behaviors 1157.08 155 536.22 13 0.975 0.970 0.068 [.064, .072] 44717 45111
CFA six-factor anhedonia 684.08 155 562.85 13 0.987 0.984 0.049 [.046, 053] 44052 44446
CFA seven-factor hybrid 633.11 149 676.59 19 0.988 0.985 0.048 [.044, .052] 43914 44339

Note. All Ax? were statistically significant at the .001 level. WLSMV = weighted least squares mean- and variance-adjusted; MLR = robust maximum likelihood; CFI =
comparative fit index; TLI = Tucker-Lewis Index; RMSEA = root mean square error of approximation; Cl = confidence interval; AIC = Akaike’s information criterion; BIC
= Bayesian information criterion; CFA = confirmatory factor analysis; EFA = exploratory factor analysis; CM = comparison model, which correlated two residual cova-
riances (Item 7 with Item 6 and Item 17 with Item 18) and is the model that all other models were compared based on the Ax% CP = convergence problems. Although
the results are not provided here, all models also differ significantly from the CFA two-factor model. When comparing the CFA one-factor (modified model) to the CFA
two-factor model, this comparison had CP and, therefore, these results could not be obtained. Recall, WLSMV does not provide the AIC or BIC; thus, we reported these

results using MLR estimation.

factor structure similar to CFA (see Sass & Schmitt, 2010;
Schmitt & Sass, 2011).

Missing data

Although Little’s missing completely at random test indicated
the data were not missing completely at random with Sample
1, x*(520) = 769.052, p < .001, the percentage of missing data
was less than 1% (0.37%) and, therefore, treated using the
default missing procedure in Mplus (see Asparouhov &
Muthén, 2010).

Model fit

Model fit was evaluated using the robust %% CFIL, TLI, and
RMSEA. The x” statistic is known to produce statistically sig-
nificant values for good fitting models when the factor structure
is complex and the sample size is large; thus, approximate
model fit statistics (i.e., CFI, TLI, and RMSEA) were also evalu-
ated. According to Hu and Bentler (1999), CFI and TLI statis-
tics greater than 0.90 are deemed adequate and values greater
than 0.95 are good. RMSEA values less than 0.10 and 0.06 are
considered mediocre and good, respectively. More information
about these statistics can be found in Hu and Bentler (1999).
When comparing models, the DIFFTEST procedure was used
to compute the Ax* and the AAIC and ABIC were considered.
Recall that it is not statistically appropriate to compare the
ACFI, ATLI, and ARMSEA with WLSMYV estimation.

Techniques to better understand the latent factor structure

Confirmatory factor analyses

To replicate previous research (see Table 1), a series of WLSMV
CFA models were first conducted. Although not commonly pro-
vided with previous PCL-5 psychometric research, a one- and
two-factor WLSMV CFA model were also estimated using Sam-
ple 1 for comparability purposes. The one-factor WLSMV CFA
produced a fairly good fitting model (see Table 2) and offered evi-
dence of being a viable model (see Table 3). The two-factor

WLSMV CFA model* (see Table 3) also fit the data well, but only
slightly better than the one-factor WLSMV CFA model (see
Table 2). Unfortunately, the interfactor correlation was extremely
high (see Table 3), indicating low discriminant validity and high
multicollinearity.

The model fit statistics for the six previously proposed PCL-5
factor structures (see Table 1) were provided in Table 2 with
Sample 1 data. As expected, the inclusion of additional factors
produced better fitting models based on the A x* and AFT; how-
ever, one could argue that these models were overfitting the data
(also evident based on the later dimensionality results) and do
not fit the data significantly better from a practical standpoint.
For example, although the AAFI statistics with WLSMV need to
be interpreted with caution (Sass et al., 2014), these more com-
plex models do not fit data much better than the one- or two-fac-
tor model based on the AAFI Moreover, the interactor
correlations were very high (nearly always above .80) and do not
provide much evidence of discriminant validity.” From a model-
ing perspective, these factor structures should not be avoided in
other statistical models (e.g., SEM, path analysis, multiple
regression) due to significant multicollinearity concerns.

An alternative approach used by many PCL-5 researchers is
to determine whether the “best model” fits significantly better
than alternative models based on the A x*, AAIC, or ABIC. The
argument for the Ax” is that if one model fits significantly bet-
ter (based on some predetermined o level) than another model,
this model is preferable. As indicated earlier, this approach has
been extremely controversial among statisticians and has been
shown not to always provide the best model, especially with
large samples and complex models. Also used, and controver-
sial among statisticians, are the AAIC and ABIC to select the

“*Consistent with the procedures outlined in Figure 2, WLSMV EFA was conducted
later because of less than ideal model fit and psychometric properties for WLSMV
CFA. Because the EFA suggested either a one- or two-factor model, more parsi-
monious WLSMV CFA models were also estimated here for comparability
purposes.

>All interfactor correlations corresponding to the models in Table 2 are available
from the corresponding author.



Table 3. Weighted least squares mean- and variance-adjusted EFA and standard-
ized CFA factor loadings for the one- and two-factor models using Sample 1
(n = 1,403) and Sample 2 (n = 715).

One-factor One-factor Two-factor Two-factor Two-factor Two-factor

EFA EFA CFA CFA

Item (n =1,403) (n=715) (n=1403) (n=715) (n=1,403) (n=715)
1 .76 .86 92 -03 1.01 -14 .89 .87

2 72 .85 .81 08 .88 -01 .87 .87

3 74 .88 75 a7 .79 14 .90 .90

4 .81 .89 83 .10 .75 .18 .91 91

5 79 .87 69 23 .69 24 .90 .89

6 .80 .90 94 -01 93 .00 .92 91

7 .76 .90 95 -03 .93 .00 .91 9

8 .64 77 56 28 .54 29 .81 .80

9 .69 .81 38 .50 38 49 85 .85
10 .68 .82 .65 24 57 30 .86 .84

1 77 .86 62 31 .58 34 .90 .88

12 74 87 -08 99 .00 .91 91 90
13 .76 88 -11 1.02 -06 .97 92 90
14 .79 .90 00 .93 -01 .94 92 92
15 72 .84 03 83 .06 .82 .85 .86
16 .64 .85 27 .62 26 .66 .87 .89
17 52 .66 Jd6 .57 12 59 71 .68
18 .64 79 24 61 24 61 .83 .82
19 .70 .81 03 .84 11 75 .85 .84
20 .65 79 08 75 25 .60 .82 .83
r N/A N/A 79 77 .86 .86

Note. EFA = exploratory factor analysis; CFA = confirmatory factor analysis. Factor
loadings greater than .40 are shown in bold, with r representing the correlation
between factors.

correct model, with change values typically greater than .10
being considered practically significant.

Not surprisingly (see Table 2), these more complex models
consistently fit the data better based on the Ax? ABIC, and
AAIC. Despite the Ax*> always being statistically significant,
this is arguably not enough evidence (especially due to the limi-
tations associated with the Ax?) to support these more complex
models. The same argument could be made for the ABIC and
AAIC. As emphasized later, it is unconvincing to claim these
more complex models are psychometrically (especially when
considering the few items per factor and the lack of discrimi-
nant validity) or statistically appropriate.

Exploratory factor analysis

Based on the WLSMV CFA results, we contend that no model
is the definitive winner and the best model supported by the
data from a statistically and psychometric perspective is incon-
clusive. To better understand the PCL-5 factor structure, we
proceeded systematically through Figure 2, which is repre-
sented by the dashed line. The 20-item WLSMV EFA
dimensionality results using Sample 1 revealed evidence of a
single strong factor and a second weak factor based on the
eigenvalues (first three eigenvalues were 14.10, 1.20, and 0.87)
and a good fitting one-factor, x*(170) = 2167.27, p < .001, CFI
= 0.95, TLI = 0.95, RMSEA = 0.092, and two-factor, x*(151)
= 1271.30, p < .001, CFI = 0.98, TLI = 0.97, RMSEA = 0.073,
model. The Sample 2 results were nearly identical based on the
eigenvalues (first three eigenvalues were 13.91, 1.20, and 0.95)
and the model fit statistics for the one-factor, x*(170) =
1282.55, p < .001, CFI = 0.95, TLI = 0.95, RMSEA = 0.096,
and two-factor, x*(151) = 793.45, p <.001, CFI =0.97, TLI =
0.96, RMSEA = 0.077, model. Based on these results, there is
no evidence of more than two factors in the data.
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For comparison purposes with previous PCL-5 research
using MLR estimation and current WLSMV results, and
because Mplus does not allow for parallel analyses with
WLSMV estimation, EFAs were also conducted assuming
continuous variables with MLR estimation. The Sample 1
results® also revealed a two-factor MLR solution based on the
estimated (and simulated) eigenvalues of 10.81 (1.22), 1.44
(1.18), and 1.13 (1.15) from the parallel analysis. However, the
Sample 1 MLR EFA estimation model did not fit the data well
for the one-factor, x*(170) = 1538.50, p < .001, CFI = 0.81,
TLI = 0.79, RMSEA = 0.076, or two-factor, x*(151) = 890.19,
p < .001, CFI = 0.90, TLI = 0.87, RMSEA = 0.059, model.
Interestingly, the MLR EFA model did not fit the data well until
a five-factor model was estimated, x*(100) = 313.06, p < .001,
CFI = 0.97, TLI = 0.94, RMSEA = 0.039, which clearly contra-
dicts the eigenvalues, parallel analysis, and WLSMV results.

From these results, it is clear that the estimation method has
a significant impact on the conclusions drawn when only focus-
ing on the global model fit statistics, as the eigenvalues and par-
alle] analysis told a more consistent story across the estimation
methods. Although this analysis might leave researchers per-
plexed, it is important to rely on statistical theory. First, MLR
can perform poorly with skewed ordered categorical data, and
second, facets might exist in the data creating model misspecifi-
cation. Based on the current data and previous factor analysis
research comparing MLR and WLSMYV, one could make a
strong case for the use of WLSMV as a more appropriate esti-
mation method with PCL-5 data.

The factor loading results based on the one-factor WLSMV
EFA models are provided in Table 3 for Samples 1 and 2, with
the results showing that each item loads on the first factor (see
one-factor model results). Although there is some evidence for
a two-factor model, the factors are highly correlated (see
Table 3) and some of the items have larger (1 > .30) cross-load-
ings (e.g., Items 9 & 11). Several other items (5, 8, 16, & 18) also
present some concern, with cross-loadings larger than desired
(ie, .20 < 4 < .30). Collectively, these results demonstrate
poor discriminant validity as the interfactor correlation sug-
gests factors to be nearly indistinguishable and several cross-
loadings imply items that measure both factors (although to
varying degrees).

Overall, the dimensionality analyses and EFA results provide
greater evidence for a one-factor model. Statistically, the eigen-
values and parallel analyses indicated a very weak second factor
(perhaps attributable to only a few items or common method
variance) and, psychometrically, a two-factor model lacks dis-
criminant validity and would likely not lead to improved gener-
alizability or predictive validity.

Bayesian CFA

Researchers (Hayduk, 2014a, 2014b) have argued that any
model misfit (i.e., having a statistically significant x?) is a con-
cern. To look deeper into the misspecification of the one-factor
model and avoid concerns associated with modification
indexes, a BCFA model can prove useful, as it produces results

5The Sample 2 results are nearly identical and reached the same conclusions and,
therefore, are not presented here. These results are available from the corre-
sponding author.
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that better reflect substantive theories (Asparouhov et al., 2015;
Muthén & Asparouhov, 2012) and provides a greater under-
standing of where model misfit occurs. In an effort to better
understand any model misfit within a one-factor model (recall,
for a one-factor model the only misfit can occur with the corre-
lated residual variances or residual covariances), a BCFA model
was conducted using Sample 1.

Model estimation. Using Bayesian estimation with a poly-
choric correlation matrix, the BCFA model was estimated using
normal priors for the residual covariances [N(0, .05), thus the 95%
CI was = 0.44] and program defaults (i.e., noninformative priors)
for the others. Larger prior covariances were selected to allow
greater model flexibility and to avoid placing too much emphasis
on the prior distribution rather than the data. After fixing the fac-
tor mean and variance at 0 and 1, respectively, to standardize the
prior distributions and set the latent factor scale, all factor load-
ings, residual variances, and residual covariances were estimated.
A well-fitting model is expected to be statistically nonsignificant,
with Muthén and Asparouhov (2012) indicating values greater
than .10, .05, or .01 are acceptable for most applications.

BCEFA results. The BCFA model produced a good model
fit; 95% CI for Ay> was [-52.96, to 66.77], posterior predictive
p-value (PPP) = 0.39. As expected, the standardized factor
loadings were all large (4 > .69) and statistically significant (p
< .001). Several residual covariances were also large (§ > .30)
and produced the presence of a second factor. These large
residual covariances were as follows: Item 1 with Item 2, § =
48; Item 6 with Item 7, § = .56; Item 10 with Item 11, § = .38;
Item 3 with Item 13, § = -.31; Item 12 with Item 13, § = .60;
Item 12 with Item 14, § = .45; Item 13 with Item 14, § = .54;
Item 17 with Item 18, § = .52; Item 19 with Item 20, § = .45.
Interestingly, items with higher residual covariances tended to
be neighboring items, thus suggesting a concern for common
method variance. In this case, people might be responding to
items based on how they responded to the previous item.

These findings provide significant insight that might have
been missed using the modification indexes, as many research-
ers would likely stop estimating parameters once the AFIs

Table 4. Number of model misspecifications at the factor loading, correlated resid-
ual, and overall (factor loadings plus correlated residuals) level using Sample 1.

8 of .20 8 of .40

Residual Overall Factor Residual Overall
loadings covariance

Factor
loadings covariance

CFA one-factor 0 2 2 0 0 0

CFA two-factor 8 1 9 1 0 1

CFA four-factor DSM-5 25 1 26 15 0 15

CFA four-factor 29 1 30 14 0 14

dysphoria

CFA five-factor 29 0 29 17 0 17

dysphoria arousal

CFA six-factor 35 0 35 19 0 19

externalizing behaviors

CFA six-factor 30 0 30 10 0 10

anhedonia

CFA seven-factor 38 0 38 14 0 14
hybrid

Note. CFA = confirmatory factor analysis. The number of model misspecifications is
based on the following criteria: a misspecification () of at least .20 or .40, a Type
| error of .05, and power equal to .80.

reached acceptable levels, thus failing to see this pattern in the
results. These residual covariance pairs imply that Items 12
through 20 are either an artifact of common method variance
or provide a very weak secondary factor (also evident by the
rather small second eigenvalue). Given the large standardized
factor loading sizes, it is very likely that this “second factor”
does not represent a construct of any practical value. This fol-
lows the suggestion of Hayduk (2014b), who indicated that
researchers need to be careful about overfactoring their data
and creating factors that do not represent unique constructs.

Model misspecification

To complement the preceding results, model misspecification
was also examined with the Saris-Satorra-van der Veld method.
As discussed by Saris et al. (2009), global fit indexes do not indi-
cate specific sources of model misspecification. Model fit is influ-
enced greatly by incidental factors (e.g., sample size) that are
unrelated with the model misspecification (Saris et al., 2009). An
alternative to the goodness-of-fit test is to turn attention to
investigating whether specific misspecifications are present in
the model. They further stated, “According to our definition, a
model that contains one or more relevant misspecifications is
not a good model” (p. 570). To implement the Saris-Satorra—
van der Veld procedure, Jrule was used to examine the power
and significance of potential cross-loadings by setting the mis-
specification cutoft, §, to .20 and .40, Type 1 error rate to .05,
and power to .80 (see Saris et al., 2009) using Sample 1.

The PCL-5 models from Table 2 were tested for model mis-
specification at the factor loading and residual covariance lev-
els, which are actually the only two areas in which
misspecification could occur with these CFA models. Table 4
results indicate a clear relationship between the number of fac-
tors estimated and the number of model misspecifications, with
Pearson correlations of .95 and .79 using the § of .20 and .40,
respectively. These results imply that the one-factor model is
likely best, as the model could be significantly improved with
only zero or two modifications depending on the size of é.
Moreover, this analysis suggests the second dimension (corre-
sponding to the second eigenvalue) is likely an artifact of a few
item pairs sharing common variance unrelated to the factor,
which is essentially a form of dimensionality. In fact, after cor-
relating two residual variances (Item 6 with Item 7 and Item 17
with Item 18), the one-factor model fit the data well, x*(102) =
1843.39, p < .001, CFI = 0.96, TLI = 0.95, RMSEA = 0.084,
and was a significant improvement over the one-factor model
without these residual covariances, Ax*(2) = 239.34, p < .001.
Collectively, these results also provide evidence that a one-fac-
tor model is likely superior.

Bifactor models

There are numerous indexes for testing factor model reliability,
dimensionality, and stability with bifactor models (see Reise,
Scheines, Widaman, & Haviland, 2013; Rodriguez et al., 2016).
In regard to omega (w) reliability, these statistics include the
reliability coefficients for the general/hierarchical (H) factor (w,
considers all item loadings or reliability of the general and spe-
cific factors) and specific (S) factors (ws, which considers only
item loadings on that respective factor or the reliability of the
specific factors) that represent the composite scores associated



Table 5. Bifactor model indexes for the two-factor and four-factor DSM-5 bifactor
model.

ECV, ECV, w/ws wylwys Relativew H FD
Two-factor bifactor model
General factor .84 .84 .99 .92 94 98 .99
Specific Factor 1 12 23 .98 22 22 71 93
Specific Factor 2 .04 .08 97 .00 .00 40 .89
Four-factor DSM-5 bifactor model

General factor .87 .87 .99 .96 .97 98 .99
Specific R .03 12 .96 .10 1 38 .82
Specific AA .02 N 93 .08 .09 24 82
Specific NACM .03 .09 .96 .02 .02 37 .88
Specific AR .05 18 94 .16 A7 49 83

Note. ECV = explained common variance; H = construct replicability; FD = factor
determinacy; R = re-experiencing cluster; AA = avoidance cluster; NACM = neg-
ative alterations in cognitions and mood; AT = alternations in arousal and activ-
ity. Both ECV; and ECV, are measures of the strength of a specific factor relative
to all explained variance of all items; however, ECV; also includes those loadings
not on the specific factor of interest (i.e., rather than only the explained variance
of the items loading on that specific factor, as in ECV,).

with multiple common factors. However, reliability measures
(wp and wys) are also available that only reflect variance related
to a single factor. The wy and wys assess the general factor (ie.,
only the reliability of the general factor) and specific factors
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(i.e., only the reliability of the specific factors), respectively,
after adjusting and partitioning out the general factor. An asso-
ciated measure is the relative w, which measures the ratio of
these statistics (i.e., wy divided by w for the general factor and
wys divided by w for to the specific factors).

The explained common variance (ECV) measures the
strength of that factor (whether general or specific) relative to
all the explained item variance, with the item-level explained
common variance (IECV) measuring the strength (i.e., factor
loading magnitudes) of the bifactor loadings on the general fac-
tor relative to the specific factor loadings (thus, high IECV val-
ues provide initial unidimensionality). Also presented here are
the factor determinacy (FD, which is the correlation between
factor scores and the factors), construct replicability (H, which
is construct replicability coefficient proposed by Hancock and
Mueller, (2001), and percentage of uncontaminated correla-
tions (PUC, which measures the percentage of covariance terms
that only reflect variance from the general factor).

Although the standards for these bifactor indexes are not
universally agreed on and tend to interact with each other
(Reise, Scheines, et al., 2013), what follows are some commonly
used standards. ECV values greater than .85 on the general

Figure 4. The factor model and standardized factor loadings for the four-factor DSM-5 bifactor model, which includes specific factors of R (re-experiencing cluster), A
(avoidance cluster), NACM (negative alterations in cognitions and mood), and AR (alterations in arousal and reactivity).
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factor (and smaller specific factor ECVs) suggest the measure is
sufficiently unidimensional; however, this assumes the PUC is
less than .80. IECV values closer to one imply that the item
reflects more of the general dimension, with a value of .50 often
being the lower bound criteria. If most of the items have values
above .80, this generally suggests that a unidimensional mea-
sure is more fitting.

When the wy is large (e.g., > .80) and the wgg are small
(e.g., < .50) evidence is provided that the general factor is more
reliable than specific factors. For example, when the wy is high,
it suggests that the general factor is reliable and can be used in
practice, whereas a small wys would indicate that the specific
factor is unreliable and cannot be used in practice. To our
knowledge, no guidelines exist for the relative w. It is also worth
noting that when the average relative bias (ARB or the differ-
ence between the general and unidimensional factor loadings)
is small, this also provides evidence of unidimensionality. PUC
is a measure of unidimensionality, with PUCs greater than .70
often providing evidence of unidimensionality. FD values less
than .90 and H values greater than .80 are preferable.

Using the full sample (N = 1,403) and WLSMV estimation,
two bifactor models were estimated to determine whether a
general or unidimensional factor was more appropriate than
either the traditional two-factor or four-factor DSM-5 model
in Table 2. Although bifactor models could be estimates for the
remaining models in Table 2, it was determined that these
results would be repetitive and not provide any new informa-
tion related to dimensionality. Results for the two-factor and
four-factor DSM-5 model were selected because they match
the number of factors best supported by our dimensionality
analyses and best correspond to theory, respectively. Note that
the use of a bifactor model was further supported by a first to
second eigenvalue ratio of 14.10 to 1.20, as this large of a ratio
between the first and second eigenvalues provides additional
evidence of a bifactor model (see Reise et al., 2010; Reise,
Scheines, et al., 2013).

Two-factor bifactor model

The two-factor bifactor model (see Figure 3) was first tested to
determine whether the bifactor model is more statistically
appropriate than the traditional two-factor model (see Table 2).
This two-factor bifactor model fit the data well, x*(150) =
944.94, p < .001, CFI = 0.98, TLI = 0.98, RMSEA = 0.06, with
the standardized factor loadings on the specific factors being
considerably smaller than the general factor. However, this dif-
ference was more noticeable for Factor 2. These factor loading
results suggest that although the items correlate consistently
well with the general model, this is not always true for the spe-
cific factors.

To provide a more complete evaluation of the bifactor
model, various bifactor indexes were examined using the previ-
ously outlined standards (see earlier). The ECV (0.84; see
Table 5) and ARB (0.078) exceeded the minimum criteria
(ECV = 0.70 and ARB = 0.10; Stucky & Edelen, 2014) to meet
the definition of a bifactor model, with the specific factor ECVs
being extremely small (see Table 5). In addition, the average
IECV was .85 (SD = 0.11, minimum = 0.65, maximum =
1.00), with 75% of the IECV being greater than .80. This also

provides support for the bifactor model. The PUC for this
model was .53.

The wy and wys indicated that the reliability was high for
the general factor (wy = 0.99), but low for the specific factors
wsy (see Table 5). These results imply that although the general
factor is reliable, the specific factors are not after adjusting for
the general factor. Although of less interest here, it is worth
noting that the FD statistic exceeded .90 (see Gorsuch, 1983;
Rodriguez, Reise, & Haviland, 2016) for the general and specific
factors, but the H statistic was only acceptable (i.e., > .80) for
the general factor and not the specific factors (see Table 5). Col-
lectively, these results suggest that a bifactor model is more sta-
tistically appropriate than a model with two specific factors and
research should consider using the total PCL-5 score.

Four-factor DSM-5 bifactor model

This bifactor model also fit the data well, x*(149) = 1233.63, p
< .001, CFI = 0.97, TLI = 0.97, RMSEA = 0.08, and resulted
in much lower standardized factor loading on the specific fac-
tors significantly than the bifactor (see Figure 4). The ECV
(.87, see Table 5) and ARB (.03) also exceeded the minimum
criteria (ECV = .70 and ARB = .10) for evidence of a bifactor
model and the specific factor ECVs were much smaller (see
Table 5). The average IECV was 0.87 (SD = 0.10, minimum =
0.66, maximum = 1.00), with 80% of the IECV being greater
than .80. The wy for the general factor was once again large,
with much smaller wyg for the specific factors (see Table 5).
The PUC for this model was .77. The FD statistic exceeded .90
for the general, but not the specific factors. The H statistic was
also only acceptable for the general factor and not the specific
factors (see Table 5). As with the previous bifactor results, these
analyses also indicate that a bifactor model is more statistically
appropriate than the four-factor DSM-5 model.

Conclusions

The intent of this article and study was to encourage research-
ers to employ psychometrically and statistically rigorous meth-
ods to retain the “optimal” number of factors and estimate an
appropriate factor structure. To begin truly dissecting clinically
relevant latent factor structures, researchers must judiciously
diagnose model fit, provide potential explanations to differen-
ces in results within and across studies, and take the next steps
in model exploration.

As Cattell (1966) stressed, searching for the “correct” num-
ber of factors is an exercise in futility, and only detracts from a
thorough investigation of factor structures that are worthwhile
to retain for the optimal number of factors and explicitly stated
scientific goal (Cudeck & Henly, 2003; Preacher et al,, 2013).
For this reason, researchers should follow the recommenda-
tions of Preacher and Merkle (2012) to “find a useful approxi-
mating model that (a) fits well, (b) has easily interpretable
parameters, (c) approximates reality in as parsimonious a fash-
ion as possible, and (d) can be used as a basis for inference and
prediction” (p. 1). Our findings challenge previous PCL-5
research that runs contrary to the recommendations of
Preacher and Merkle (2012), as we found little statistical and
psychometric evidence for more than two factors. In fact, a
stronger argument exists for a single-factor model based on the



parallel analyses, model fit statistics, lack of discriminant valid-
ity, model misspecification analyses, BCFA, and bifactor results.
Moreover, several of the previously proposed models are signif-
icantly flawed from a psychometric (e.g., fewer than three items
per factor) and statistical (e.g., inappropriate model estimation)
perspective. The resultant danger of overreliance on simple
global fit statistics is that excessively complex models tend to
overfit the data; thus, using global goodness-of-fit indexes as
the only model selection criteria is analogous to “p-hacking”
and is not prudent (Browne & Cudeck, 1992; Head, Holman,
Lanfear, Kahn, & Jennions, 2015; Roberts & Pashler, 2000; Sieg-
fried, 2010; Wasserstein & Lazar, 2016).

If complex models result in more accurate cross-vali-
dated and better prediction, then it makes sense to use the
complex models, but if they do not, then simpler models
should be used. Further, Ropovik (2015) reviewed 11 psy-
chological journals and found that researchers have a pro-
pensity to accept theoretically complex models. We concur
with this finding and found that PCL-5 researchers tend to
overextract factors that are neither statistically nor psycho-
metrically justified and that seem to lean heavily toward
verisimilitude. Further, depending on the diagnostic scoring
algorithm (e.g., number of symptoms required for each
model-derived factor), different psychometrically and statis-
tically derived models can also have an impact on diagnos-
tic criteria (e.g., diagnostic algorithms based on different
models), which in turn affects PTSD prevalence rates (see
Murphy et al,, 2017; Shevlin, Hyland, Karatzias, Bisson, &
Roberts, 2017; Wortmann et al., 2016). Thus, thoroughly
searching for the “correct” or “best” factor analytic model is
a statistically and clinically important endeavor.

In conclusion, the intent of this article is to encourage
researchers seeking to evaluate the psychometric properties of
measures to take a more rigorous and holistic approach to
measurement evaluation. Our hope also is that researchers
carefully consider the model estimation method, the practical
utility of the factors (e.g., how well it predicts the desired out-
comes), the intended purpose of the measure (ie., generaliz-
ability vs. verisimilitude), and justify their measurement and
modeling decisions based on good statistical and psychometric
practices. Without these steps, researchers are in danger of
flooding research journals with inconsistent and potentially
incorrect models, which will only slow the progress of science
and hurt the people these models and measures were designed
to help.
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